HZNUOJ

合并果子

Tags:
Time Limit:  1 s      Memory Limit:   128 MB
Submission:28     AC:10     Score:99.49

Description

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。


    
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。


    
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。


    
例如有3种果子,数目依次为129。可以先将12堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

Input

 输入文件fruit.in包括两行,第一行是一个整数n(1<n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<ai<=20000)是第i种果子的数目。

Output

输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231

Samples

input
3 1 2 9
output
15

Hint

对于30%的数据,保证有n<=1000: 
对于50%的数据,保证有n<=5000; 
对于全部的数据,保证有n<=10000。 

Source

NOIP2004提高组